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chain: thermodynamic properties and Doppler shift 
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t Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 OQX, UK and 
Institute of Physics, University of Uppsala, Uppsala, Sweden 
$ Department of Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK 

Received 1 March 1990 

Abstract. Thermodynamic properties of the modulated spring chain, introduced by 
de Lange and Janssen to study excitations in an incommensurate composite system, 
are obtained by an exact algebraic method. A new feature is the inclusion of a mass 
defect. It is shown that a light mass defect enhances effects due to spring modulation, 
which are most ,significant at low temperatures. 

1. Introduction 

We report an extensive study of the vibrational properties of a chain of atoms bound 
by harmonic forces in which the springs depend on site position. In the most general 
case considered, the mass of one atom is taken to be different from all others. Our 
analysis of the mixed mass chain is exact a t  all stages. 

The motivation for the study is twofold. First, it is a study in statistical mechan- 
ics of an exactly solvable model that can be viewed as a nontrivial generalisation of 
the Rubin (1961) model, in which the springs are independent of the site position. 
Secondly, the results might serve as a feasibility study for experiments designed to 
unravel the lattice dynamics of incommensurate crystals. In this context, the model 
with equal masses was introduced by de Lange and Janssen (1981) and it is usually 
referred to as the modulated spring model (Currat and Janssen 1988). Our contribu- 
tion to its study is an exact analytic formulation of the vibrational properties, which 
complements and extends previous results largely obtained by numerical techniques; 
for a review see Currat and Janssen (1988). Armed with an analytic formulation it is 
possible to study exactly properties induced by a single defect. We choose a simple 
mass (isotope) change, as in the Rubin model. A preliminary account of our work 
has been published (Lovesey 1989), and a companion to this paper reports the dual 
spectrum and inelastic neutron cross section (Lovesey and Westhead 1990). 

The site dependence of the springs mimics the situation prevailing in an incom- 
mensurate composite system. In this instance, spacing of the atoms in the chain is 
not the same as that between atoms in the crystal in which the chain is embedded. 
Hence, the local environment of atoms in the chain varies from site to site, and it is 
taken to produce springs that depend on site position. This dependence is assumed 
to embody the entire influence on the chain of the crystal which it inhabits. 

0953-8984 /90/367407+17$03.50 @ 1990 IOP Publishing Ltd 7407 



7408 S W Lovesey and  D R Westhead 

The potential energy in the model is 

Here, U, is the displacement of the atom at the site labelled by the integer n, and a, 
is the spring constant. Following de Lange and Janssen (1981) we adopt the form 

(Y, = m{a -  COS(^& + A)} (2) 

in which the strength 7, phase A and wavevector Q specify the sinusoidal modulation. 
The spacing between atoms in the chain is equal to  unity, and m is the atomic mass. In 
the companion paper (Lovesey and Westhead 1990) the properties of both cosine and 
squared-cosine modulations are discussed in the context of the one-phonon neutron 
cross section. 

In our work Q = (27rM/N) where M and N are integers, i.e. the springs are N -  
fold periodic = a,. By a suitable choice of M ,  N we can obtain the modulation 
wavevector appropriate to an interpretation of numerical or experimental data, since 
the value of Q is specified with finite accuracy. An incommensurate system can be 
approached by employing a sequence of fractions, e.g. Fibonacci numbers, but we 
do not pursue this topic. Given that the equation of motion for the displacements 
is one-dimensional and the springs are periodic, the lattice dynamics in the form of 
a displacement Green function can be derived analytically. The model is specified 
fully in section 2, and calculation of the displacement Green function is taken up in 
section 3. 

Local properties of the chain are revealed in the second-order Doppler shift of a 
Mossbauer peak. In order to  explore what information might emerge from appropriate 
experiments, we introduce a single mass defect in the model to  represent a Mossbauer 
isotope. I t  is well known that the displacement Green function of the mixed mass 
system can be expressed in terms of the Green function of the pure system, and 
appropriate expressions are provided in sect ion 4. High- and low-temperature series 
for the mean square velocity of the mass defect and the defect energy are reported 
in section 5 .  Impurity induced effects in the density of states are summarised in 
section 6. Extensive numerical results are discussed in section 7. Our conclusions are 
summarised in section 8. 

2. Equation of motion and correlation functions 

The Hamiltonian which describes the modulated spring model is the sum of kinetic 
and potential energy (1) terms. This Hamiltonian is diagonalised by normal modes 
labelled by the index 6, with eigenvectors and eigenfrequencies denoted by f u ( n ) ,  wu 
respectively. The orthonormality and closure relations are taken to  be 

n 

and 

a 



Vibrational properties of the modulated spring chain: I 7409 

where m, is the mass of the atom at site n. If b,, b$ are standard Bose operators 
then the displacement operator is 

It is convenient to  couch the lattice dynamics in terms of the displacement Green 
function 

where Re z = w and Im z = q > 0. The equation of motion for P(1, n; z )  is readily 
shown to be 

(mz’ - (YI  - Crlt,)P(1, n; z )  = 61,n - CrIP(I - 1, n; 2 )  - Crlt,P(l + 1, n; %). (7) 

The calculation of P(1, n; z )  with N-fold periodic springs (2) is the subject of the next 
section. 

We conclude this section by recording expressions, written in terms of the Green 
function, for correlation functions of immediate interest. First, the time-dependent 
displacement correlation function 

l o o  
(8) (u f lu l ( l ) )  = -; loo dw{l+ n(w)} exp(iwt)ImP(l,n;w). 

Here, the imaginary part of the Green function is calculated in the limit q + 0, .(U) 

is the Bose factor at temperature T ( h  = k, = 1) 

1 
exp(w/T) - 1 n(w) = (9) 

and the angular brackets denote a thermal average of the enclosed quantity. 
The velocity correlation function, required for the proposed Mossbauer experi- 

ment and total energy calculation, can be calculated from (8). However, the N-fold 
periodicity of the springs fragments I m P  in to N pieces and this structure renders 
evaluation of the integral a complicated task.  In view of this, we exploit the identity 

W 

where k is an integer and rk = (2nk.T)’ to  obtain the result 

W 

( y I o f l )  = { ( 6 1 , f l / m )  + rkP( l ,  n;  z 2  = - r k ) ) *  (11) 
k = - w  

Expressions (8) and (1 1) are presented for the equal-mass chain. They are valid for 
the mixed-mass system, discussed in section 4,  when P is replaced by the appropriate 
Green function and the mass m in (11) is replaced by ml,  the mass at the site labelled 
by I .  
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3. Green function 

In this section we obtain an analytic expression for the Green function (6) using the 
equation of motion (7). The mathematical method employed is described in previous 
publications (Lovesey 1988a, b) so only an outline of the calculation is presented here, 
with some details deferred to an appendix. The reader should note that the derivation 
is independent of the specific form of the spring modulation given in (2); it is only 
required to be N-fold periodic. 

We aim to calculate the site-diagonal Green function P(n;z)  E P(n ,n ;z ) .  
From (7) it is readily shown that this quantity can be written in terms of two in- 
finite continued fractions. For N-fold periodic springs the two continued fractions are 
proportional to each other, and expressible in terms of two sets of polynomial functions 
denoted here by { p , }  and {qn}. These functions are constructed recursively from the 
difference equation 

with a similar equation for qn, and initial conditions po  = q1 = O,pl = qo = 1. The 
Wronskian relation is 

Let us define 

(14) 
2 

DN = (2aN-1aN-2***a0)  - ( p N + l  +qN)' 

then the result for the site-diagonal Green function can be written 

Hence, the displacement Green function for an N-fold modulation is fully determined 
by a knowledge of the functions {p,}, {qn} up to PN+l ,  qN+1. The choice of sign 
in (15) is discussed in an appendix. 

A formula for the density of states Z(w) ,  normalised to unity in the interval 0 5 
w < CO, is obtained from the definition of the Green function (6). We find, 

N- 1 2w 
TN 

Z(W) = -- m ImP(n;w) 
n=O 

and the result is valid for the mixed mass system when the appropriate Green function 
is substituted and the mass is replaced by m,. Substituting (15) in (16) the sum over 
sites can be accomplished with the Christoffel-Darboux formula. The final expression 
for the density of states of the equal-mass, N-fold periodic spring chain is 

D, < 0 

where the prime denotes differentiation with respect to z2 = w2.  General features 
of the analytic structure of (17) have been discussed in detail (Lovesey 1988a,b), 
together with an explicit expression for N = 3 (Lovesey 1989). Further examples are 
presented and discussed in section 6, including the effect of a simple mass defect which 
is introduced in the following section. 
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4. Mass defect 

It is well established that a mass defect has a significant effect on the lattice dynamics 
of a harmonic system; see, for example, Maradudin et a1 (1971). Here we examine 
an essentially new model in which a mass defect is substituted in a chain with mod- 
ulated springs, specified by (2). This model is of interest in statistical physics as a 
generalisation of Rubin’s model. However we are interested in it chiefly as a model 
to elucidate features of an incommensurate crystal which might be revealed in the 
second-order Doppler shift of a Mossbauer peak. If the isotope is placed at the site 
labelled s the shift is proportional to the mean-square velocity ( U : ) .  This quantity is 
calculated from (11) with the appropriate Green function. 

The latter is derived from an equation of motion obtained from (7) by replacing the 
mass on the left-hand side by m( l -X~5~ ,~ ) ;  here the mass defect parameter X = l-m‘/m 
where m’ is the mass of the isotope. Note that for a light defect 0 5 X 5 1, while for 
a heavy defect A < 0. The displacement Green function G(1, n; z )  can be expressed in 
terms of the Green function P(1, n; z )  for the equal-mass chain. A standard calculation 
leads to the result (see, for example, Lovesey 1986) 

mXz2P(I, s; z )P( s ,  n; z )  
1 - mXz2P(s; %) 

G(1, n; z )  = P(I, n; z )  + 
The density of states calculated from (18) for site-independent springs (y = 0 in (2)) 
shows that a heavy mass decreases normal mode frequencies from their values in the 
corresponding pure ( m  = m’) case, whereas a light defect increases frequencies and 
generates localised modes outside the band interval of the pure density of states. 
Results for modulated springs are presented in section 7. 

The mean-square velocity of the isotope is calculated using (11) with m + 

and (18), taking 1 = n = s and m, = m’. We find, 

X - 1  
1 + mXrkP(s; z2 = -rk) 

where rk = ( ~ T I C T ) ~ ,  and the pure Green function is given by (15). This expression is 
the basis of high- and low-temperature expansions presented in the next section, and 
numerical work reported in section 7. 

For a harmonic system, the total internal energy is Cl mi($). We are particularly 
interested in the contribution from the defect. An appropriate expression for the defect 
energy per particle E ( S )  is obtained from (11) with m .--i m, and (18) together with 
the standard identity, 

m P(s ,  n; z ) P ( n ,  s; z )  = -P’(s; z )  
n 

where P(s;  z )  G P(s,  s; z ) ,  the sum is over all sites the and the prime denotes differ- 
entiation with respect to z2 .  After some straightforward algebra we find the result 

in which the function is evaluated for z2 = - r k ,  and No is the total number of atoms. 
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5. High- and low-temperature expansions 

Here we report high- and low-temperature expansions for the mean-square velocity of 
the isotope defect, and the defect energy per particle. Our results are derived from (19) 
and (21), respectively, in which the temperature T appears in rk = ( 2 ~ k T ) ~ ,  apart 
from a multiplicative factor. In the limit y -, 0, when there is no modulation of the 
springs, our results agree with corresponding expressions reported by Maradudin et a1 
(1971). 

For high-temperature expansions we need P(s;  z )  evaluated for t + 00 with t 2  = 
-rk. To this end, we expand (6) in ( l / z2 ) ,  using (3) and (4) together with the 
eigenvalue equation. We find 

which substituted in (19) and (21) leads to 

m’(v:) = T{ 1 + (as + as+l)/[12mT2(1- A)] + . . .} (23) 

and 

E ( S )  = A(@, + a,+l)/[12mTNo( 1 - A)] + * .  (24) 

with a, defined by (2). In these expressions we see the expected high-temperature 
limiting behaviour, in which (v:) - (T/m’) and the defect energy vanishes. Impurity 
induced effects are seen to be most significant for a very light mass defect, namely 
A --+ 1. The defect energy has the sign of A, so the internal energy is increased by a light 
defect and decreased by a heavy defect in accord with findings for site-independent 
springs. 

In order to get low-temperature expansions from (19) and (21) we employ the 
Poisson summation formula, 

CO 03 

ho + h ( k )  = 2 1 dk h ( k )  exp(2aimk) 
k 1  m = - w  2 (25) 

in which it is assumed that h ( k )  -+ 0 for IC -+ ca. Inserting (25) in (19) and (21), 
integration by parts yields the zero-point contributions and a power series in T2. 
Results to order T 2  are 

F‘ 0 
E ( S )  = E O ( S )  - ( + o p 4 )  

 NO 
and 

where the functions F and H are given by 
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and 

H(u)  = ( 2 / m ) [ l +  m( l  - A ) U ~ G ( S ; J  = -u2)]. 

The zero-point values in ( 2 6 )  and ( 2 7 )  are 

and 
00 

So = f 1 du H(u). 

In order to evaluate the coefficients in these expansions it is convenient to use the 
Laurent expansion of ( 1 5 )  

~ P ( s ;  U' = -U') = A/u + BU + Cu3 + * * * . 
Differentiation then yields F'(0) = -(AA/2) and H'(0 )  = 2m(l - A)A/n.  We will 
require results for p ,  and q, evaluated at  zero frequency: 

P,(O) = Sn-1(a,-1, a,-2, * * .  ,ao) 

q,(O) = --(y02Sn-2(~,-1, an-2 ,  * 1 a11 

and 

where the function S, takes n + 1 arguments, forms all possible products of n distinct 
arguments and adds all these products together. These can be proved from ( 1 2 )  and 
yield the simple result 

p N + 1 ( 0 )  + q N ( O )  = 2 a N - 1 a N - - 2 . * * Q O '  

In order to  evaluate A we also need the corresponding result for frequency derivatives 
in the form 

P L + ~ ( o )  + &(O) = - N S N - 1 ( a N - l , a ~ - z , * . .  , ~ o )  

which can be proved using the Christoffel-Darboux formula. 
These results then give 

and substituting this in ( 2 6 )  and (27)  we get the expansions 

and 

Note that the T2 term is independent of the site s but the zero-point and T4 terms 
are not. The zero-point integrals are dealt with in section 7 where results of extensive 
studies are presented. 
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6. Density of states 

An analytic expression for the density of states in the pure system is given in (17). In 
general this is fragmented into N bands. The density of states in the system with a 
single defect a t  site s is given by modifying equation (16) 

Z ( w )  = -- 2w m( 1 - Ab,,,) Im G(n; w )  
nN0 n 

where G(n;w) is the Green function provided in section 4. This formula yields 

where Zp(w) denotes the density of states in the pure system (17) 

40 

30 

m 

ii 10 

I a 

A=-0.5 

Figure 1. The function j ( p  = w z )  defined in (33) for a defect at site s = 0. We 
take a = m = 1, N = 4, M = 1, 7 4- 0.5, A = 0.0 and X = -5.0. The zeros of 
this function are the three localised modes for the system with a heavy mass defect 
and N = 4. Note that the unperturbed Green function has singularities at the band 
edges. 

We now examine the changes in the density of states resulting from the defect given 
by the second contribution to Z(w)  in equation (31). Firstly we look at w within the 
unstable bands of the pure system, i.e. frequencies such that Zp(w) = 0. In this case 
we obtain 

1 
Z ( w ) =  - - c b ( w - w i )  

No i 

where { w i }  are the roots of 

f ( w 2 )  = Re(1 - mAw2P(s;w))  = 0. (33) 
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- 2. 
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A =  0.6 

Figure 2. The function f ( p  = w z )  given by (33) for a defect at site s = 0. We take 
a = m = 1, N = 2, M = 1, y = 0.5, A = 0.0 and X = 0.6. The zerm are the two 
localised modes for the system with a light mass defect and N = 2. 

The { w i }  are the frequencies of the so-called localised defect modes. Although the 
contribution (32) does not explicitly vanish in the limit X -+ 0 in fact it is trivial 
to  show using (15) that { w i }  move continuously to the edges of the stable bands as 
X -+ 0. In this way we can think of the localised defect modes as peeling off the edges 
of the stable bands. The roots of (33) have many interesting properties which can be 
extracted by studying the form of the Green function (15) and using properties of the 
polynomials { p , }  and {q,} proved by Kat0 (1983). In particular, for -m < X < 0 
(heavy defect) there are ( N  - 1) localised modes, one just below each stable band. 
For a light defect, 0 < X < 1 ,  there are N localised modes one just above each stable 
band. The function f ( w 2 )  is plotted in figure 1 for X < 0 and N = 4 and in figure 2 
for X > 0 and N = 2; extensive numerical work is reported in the following section. 
The stable bands are identified by f ( w 2 )  = 1, since the real part of the Green function 
vanishes in a band. Furthermore, the Green function is singular at band edges as is 
evident from the result (15) and the illustrations provided in figures 1 and 2. We can 
readily find the frequency of the highest localised mode, w,, for a light defect with 
X -+ 1. Taking just two term in the expansion (22) leads to 

muo 2 = a,+a,+1 
( l / X )  - 1 * 

(34) 

Clearly as X --+ 1 the mode moves further from the band edge. The dependence on 
the parameters N ,  7, and A is in the numerator of (34). There is no localised mode 
above the bands for a heavy defect. 

Since the total number of modes is unchanged by the introduction of a substitu- 
tional defect, the normalisation of the density of states is preserved. In consequence, 
the intensity associated with the localised modes (32) is compensated by a decrease 
in intensity within the stable bands. The normalisation and width of the density of 
states is perhaps most easily tackled by exploiting the spectral representation of the 
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Green function. Starting from (6) it can be shown that 

cQ 2uImG(n;u) 
w2 - U2 ’ 

G(n;w) = -: 1 du (35) 

As the spectrum is bounded above we can safely expand the expression for large values 
of w2 

l o o  
G(n;w) = -a 1 du 2uImG(n;u) - - T W 4  1” du 2u31mG(n;w) + . . . . (36) 

The first term in (36) when summed over sites, as in (30) is proportional to the 
normalisation of the density of states, while the second term is the mean square width. 

Using the explicit expansion given in (22) we can confirm that Z(w) in the pure 
system is normalised to unity in 0 < w < 00. Expanding the defect contribution 
in (31) 

we see that there is no term in 1/w2. Hence, the integrated intensity from the mass 
defect is zero which is required to preserve the normalisation of the density of states. 
The contribution of the defect term to the mean-square width of the density of states 
is 

This takes the sign of X reflecting the fact that a heavy defect decreases all the normal- 
mode frequencies and a light defect increases them. The shift is large for (m’/m) 4 0 
due to the emergence of a high-frequency localised mode (34) in this limit. 

7. Numerical work 

An explicit expression for the density of states for N = 3 has been reported by Lovesey 
(1989). For larger values of N the algebraic expressions become increasingly cumber- 
some. In view of this we turn to a wholly numerical implementation of our formulae 
in which the polynomials are obtained by straight forward recursion using (12) and 
appropriate initial values. We take as our example the case N = 5 and provide 
comparison with the results for N = 3. 

Figure 3 shows the mean-square velocity of the defect atom as a function of reduced 
temperature. We take a = m = 1, y = 0.5, and A = 2 ~ 1 5 .  For these values of the 
parameters the five-periodic system has only three distinct sites. We show results for 
a defect at any one of these sites and for three values of the defect parameter A.  The 
most noticeable effect is seen by comparison of figures 3(b) and 3(c) with figure 3(a). 
Figure 3(a) corresponds to the pure system. We see that the distinction between the 
three sites increases for a light mass defect 3(c) and decreases for a heavy mass defect 
3(b). Light mass defects therefore enhance the effect of the modulation. f i r ther ,  we 
see that the mean-square velocity approaches classical values a t  high temperatures 
consistent with the expansions reported in section 5. The low-temperature limits 
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1 2  0 8  
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./- ---- 
0 4  

- 0 
0 0 2  0 4  0 6  0 8  1 0  

T 

___----- 
2.4 - 
2 .o 

-4  

_.-__.---- //----- Figure 3. Plot of m,(V:) against reduced tem- 
perature. We take a = m = 1, 7 = 0.5, 
N = 5 ,  M = 1 and A = (2*/5). Each plot 

0.2 0.4 0.6 0.8 shows the three distinct sites. (a) X = 0 ,  ( b )  X = 

1.6 

-5.0, ( c )  X = 0.9. T 

\ 
\ 

\ A-0.9  

\ 
\J' 

1 
0 1 2 

A12n 
Figure 4. The quantity ms(zIz) plotted against A / T  is displayed for X = 0.0, 0.9 
and -5.0. We take a = m = 1, N = 5, M = 1,7 = 0.95 and a temperature T = 0.2. 

are consistent with the zero-point integral defined in section 5. In this context note 
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Figure 5. The defect energy, e(s), as a func- 
tion of temperature for a heavy mass defect, 
X = -5.0. Here the defect is at site s = 0 and we 
have a = m = 1, N = 5 ,  M = 1, 7 = 0.0 - 0.8 
and A = 2 ~ 1 5 .  

0.32 

G 0.28 
w 

0.24 

X.O.9 

0 4' 
0- 
0 

0.2 0.4 0.6 0.e 
T 

Figure 6. As figure 5 ,  but for a light mass de- 
fect, X = 0.9. 

that for X = 0.9 (figure 3(c)) the low-temperature behaviour is constant to  a good 
approximation in contrast to  the results reported by Lovesey (1989); the difference in 
behaviour has been traced to  an inadequate numerical scheme in the latter work. 

In figure 4 we examine the effect of the phase of the modulation A on the mean- 
square velocity. The broad features are the same for N = 3 and N = 5 in the sense 
that in each case there is one maximum and one minimum in the range 0 < A < 27r. 
Again we see that light defects enhance the effect of the modulation while heavy 
defects reduce it. 

We now turn our attention to the defect energy, E ( s ) .  It is shown as a function of 
temperature in figures 5 and 6 for various values of the modulation y.  For a heavy 
defect ~(s) is negative, while for a light defect it is positive. If we take a light defect 
(figure 8) we see that defect energy is an increasing function of the modulation y. For 
the heavy defect the defect energy is a decreasing function of y except at  very low 
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-0.03 

-0.04 

;; -0.05 I i  
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-0.07 

Figure 8. The defect energy as a function of 
A/2n at a temperature T = 0.2 for a light defect, 
X = 0.9. Again Q = m = 1, N = 5 ,  M = 1 and 
we show y = 0.0 - 0.8. 

Figure 9. As figure 8, but for a heavy defect, 
X = -5.0. Note the significant difference in the 
vertical scales compared with figure 8. 

temperatures where it is no longer a monatonic function but shows a minimum for an 
intermediate value of y. 

These results should be compared with figure 7 which shows the zero-point defect 
energy as a function of y. Clearly it is monatonic increasing for X > 0 but shows a 
weak minimum for X < 0. 

Finally in figures 8 and 9 we show defect energy as a function of modulation phase 
A at a temperature T = 0.2 and for various values of 7, The salient features do not 
change from N = 3 to N = 5 ,  in as much as that there is one distinct maximum 
and one distinct minimum. Clearly a defect will lock to the modulation phase a t  the 
value corresponding to minimum defect energy. While the size of the lock-in effect 
is exaggerated for small periodicities it is expected to survive in the incommensurate 
limit. 

8. Conclusions 

An algebraic method, imported from our previous studies of modulated magnets and 
electrons in a magnetic field, provides an elegant means of obtaining thermodynamic 
properties of the modulated spring chain. Attention here is limited to a cosine modu- 
lation, but the same method is successful for more complicated modulation functions, 
as demonstrated by Lovesey and Westhead (1990). A major part of the work reported 
has addressed properties of a mass defect in the modulated chain. Without excep- 
tion we find that effects due to the spring modulation are enhanced by exploiting a 
probe with mass less than the host atoms. It is shown that a mass defect generates 
a localised mode in every gap in the fragmented density of states, and for a light 
mass there is an additional one above the highest frequency band. Thermodynamic 
properties have been obtained without recourse to standard integrals of the density of 
states for these would clearly be technically difficult to accurately perform. High- and 
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low-temperature expansions reveal the sensitivity of thermodynamic quantities to the 
modulation. As might be expected, this is largest at  low temperatures. 
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Appendix 

Equation (15) gives an expression for the Green function in terms of the sets of polyno- 
mials { p , }  and {q,}. In this appendix we present a derivation of this equation which 
follows Lovesey 1988a, b fairly closely but also provides a prescription for choosing 
the sign on the right hand side of (15). 

Beginning with the equation of motion (7) it is a matter of trivial manipulation to 
produce an exact expression for the Green function in terms of two infinite continued 
fractions 

where a, = z2 - a,  - a,+l, and 

f f x  
2 H ,  = 

Qn+1 a n  - 

Considerable simplification is produced by taking the coefficients in these continued 
fractions to  be periodic, ie a,,+! = an. In this case Ho E H and Go G G can be 
shown to correspond to fixed points of bilinear transformations and we can produce 
closed algebraic formulae for the continued fractions. 

In order to deal with H it is natural to introduce a set of transformations {J,} 
defined by 

These can be expressed in terms of the polynomials { p , }  and {q,} defined in section 3, 

j,(2c) = q n + l +  "Qn. 
P n + l +  "Pn 

This can be proved by induction, it is clearly a bilinear transformation. 
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It is clear that if H converges then it is a fixed point of the N-fold transformation; 
JN(H) = H. This condition is stated more precisely in the following theorem due to 
Wall (see Wall (1973), theorem 8.1). 

Let x1 and x2 be the two fixed points of J N ,  and let F, be the nth approximant 
of H defined by F,, = J,(O) = qntl/pnt1. Then H converges if and only if xl and x 2  
are finite complex numbers satisfying either 

Xl = x2 

or 

IFN-l - 2 2 1  > IFN-l -'lI Fp # '2 

for p = 0,  1, . . . , N - 1. If the continued fraction converges it's value is x l .  

The two fixed points of J N  are given by (AS), they satisfy the quadratic equation 

x2PN + x(PN+l - qN) - qN+1 = (A61 

i.e. 

' l r  '2 = (qN -pN+1 m ) / 2 P N  (-47) 

where we have used (13) and (14). The above theorem requires x1 (the value of H )  
to be the root that minimises 

IFN-l - '1, x21 = b N + 1  + qN 7 m 1 / 2 b N l .  (A81 

Outside the stable bands where DN < 0 this can be implemented straightforwardly. 
IfpN+, + qN > 0 then 

'1 = = (qN - pN+1 + m ) / 2 P N  (A91 

and if pN+l + qN Y 0 then 

x1 = = (qN - pN+1 - m ) / 2 P N *  

It is easy to show that the polynomial pN+, + qN has no roots in the regions DN < 0. 
Within the stable bands the situation is complicated by the fact that the continued 

fractions do not converge for DN real, DN > 0. In order to obtain convergent contin- 
ued fractions we must assign DN a small imaginary part, corresponding to J = w + iq 
where 77 + O+. We have 

DN(w) + iq- dw 

and we use the notation b = -qdDN/dw. Using this prescription, minimisation of 
the quantity given in equation (A8) leads us to minimise 
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If z1 is the root that accomplishes this, then for pN+l + qN > 0 the sign that we take 
in (A7) to correspond to z 1  is that of + b ,  and for pN+l + qN < 0 we take the sign of 
-b .  In this way we have an algebraic expression for H on the full real axis of the D N  

plane. 
The above analysis can be repeated for the other continued fraction G. This yields 

the result that 1/G is given by the same quadratic equation as H ,  the equation (A6), 
but corresponds to the other root x2. The sum and product of these roots are then 
given by 

and 

The difference of the roots is given by 

and the sign of this is to be chosen according to the above prescription for deciding 
which root is z l .  

Noting that equation (A4) implies that J,(H,) = H ,  and using this in (A5) we 
obtain 

H =  qn+1+ H n q n  

P,+l+ HnPn ' 

We can obtain a similar expression for G, in terms of G, and substitute these in (Al )  
to yield the following expression for the Green function in terms of the quantities 
above 

Substituting for these quantities we obtain equation (15) 

mP(n; f )  = * [ q N + l d + l  +Pn+lqn+l(qN - pN+1)  - P N d + 1 1  
CI;Q:-l * . . C I a f i  

Outside the stable bands we use equations (A9) and (A10) to chose the sign in 
(15) to be positive if pN+l  + qN > 0, and negative if pN+l  + qN < 0.  

Within the stable bands we are concerned to prove that our expression for the 
density of states, given in (16), is strictly positive. For D N  > 0 ,  substituting (15) in 
(16), and using the Christoffel-Darboux formula (see Lovesey 1988a,b), we obtain 
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where the prime denotes differentiation with respect w2.  This can be rewritten 

In this way the sign of Z(w) is related to the sign of p N + l  + q N  , the sign of W O N ,  and 
our choice of sign in (15). Noting that b = -q dDN/dw = -2qwD/N we can try out 
all possibilities for the signs of the various quantities and it emerges that the analysis 
will always yield a density of states that is strictly positive within the stable bands, 
as in equation (17). 
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